Signed Exceptional Sequences and the Cluster Morphism Category

نویسندگان

  • KIYOSHI IGUSA
  • GORDANA TODOROV
  • Jerzy Weyman
چکیده

We introduce signed exceptional sequences as factorizations of morphisms in the cluster morphism category. The objects of this category are wide subcategories of the module category of a hereditary algebra. A morphism [T ] : A → B is an equivalence class of rigid objects T in the cluster category of A so that B is the right hom-ext perpendicular category of the underlying object |T | ∈ A. Factorizations of a morphism [T ] are given by totally orderings of the components of T . This is equivalent to a “signed exceptional sequences.” For an algebra of finite representation type, the geometric realization of the cluster morphism category is the Eilenberg-MacLane space with fundamental group equal to the “picture group” introduced by the authors in [IOTW15b].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A RELATION BETWEEN THE CATEGORIES Set * , SetT, Set AND SetT

In this article, we have shown, for the add-point monad T, thepartial morphism category Set*is isomorphic to the Kleisli category SetT. Alsowe have proved that the category, SetT, of T-algebras is isomorphic to thecategory Set of pointed sets. Finally we have established commutative squaresinvolving these categories.

متن کامل

Exceptional Sequences and Clusters

We show that exceptional sequences for hereditary algebras are characterized by the fact that the product of the corresponding reflections is the inverse Coxeter element in the Weyl group. We use this result to give a new combinatorial characterization of clusters tilting sets in the cluster category in the case where the hereditary algebra is of finite type.

متن کامل

On descent for coalgebras and type transformations

We find a criterion for a morphism of coalgebras over a Barr-exact category to be effective descent and determine (effective) descent morphisms for coalgebras over toposes in some cases. Also, we study some exactness properties of endofunctors of arbitrary categories in connection with natural transformations between them as well as those of functors that these transformations induce between co...

متن کامل

On the category of geometric spaces and the category of (geometric) hypergroups

‎In this paper first we define the morphism between geometric spaces in two different types‎. ‎We construct two categories of $uu$ and $l$ from geometric spaces then investigate some properties of the two categories‎, ‎for instance $uu$ is topological‎. ‎The relation between hypergroups and geometric spaces is studied‎. ‎By constructing the category $qh$ of $H_{v}$-groups we answer the question...

متن کامل

Combinatorial Aspects of Exceptional Sequences on (rational) Surfaces

We investigate combinatorial aspects of exceptional sequences in the derived category of coherent sheaves on smooth and complete algebraic surfaces with pg = q = 0. We show that to any such sequence there is canonically associated a complete toric surface whose torus fixpoints are either smooth or cyclic T-singularities (in the sense of Wahl) of type 1 r2 (1, kr − 1). We also show that any exce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015